Source code for slugpy.cloudy.read_cluster_cloudyphot

"""
Function to read a SLUG2 cluster_cloudyphot file.
"""

import numpy as np
from collections import namedtuple
import struct
from ..slug_open import slug_open
from ..photometry_convert import photometry_convert
from ..read_filter import read_filter

[docs] def read_cluster_cloudyphot(model_name, output_dir=None, fmt=None, nofilterdata=False, photsystem=None, verbose=False, read_info=None): """ Function to read a SLUG2 cluster_cloudyphot file. Parameters model_name : string The name of the model to be read output_dir : string The directory where the SLUG2 output is located; if set to None, the current directory is searched, followed by the SLUG_DIR directory if that environment variable is set fmt : string Format for the file to be read. Allowed values are 'ascii', 'bin' or 'binary, and 'fits'. If one of these is set, the code will only attempt to open ASCII-, binary-, or FITS-formatted output, ending in .txt., .bin, or .fits, respectively. If set to None, the code will try to open ASCII files first, then if it fails try binary files, and if it fails again try FITS files. nofilterdata : bool If True, the routine does not attempt to read the filter response data from the standard location photsystem : None or string If photsystem is None, the data will be returned in the same photometric system in which they were read. Alternately, if it is a string, the data will be converted to the specified photometric system. Allowable values are 'L_nu', 'L_lambda', 'AB', 'STMAG', and 'Vega', corresponding to the options defined in the SLUG code. If this is set and the conversion requested involves a conversion from a wavelength-based system to a frequency-based one, nofilterdata must be False so that the central wavelength of the photometric filters is available. verbose : bool If True, verbose output is printed as code runs read_info : dict On return, this dict will contain the keys 'fname' and 'format', giving the name of the file read and the format it was in; 'format' will be one of 'ascii', 'binary', or 'fits' Returns A namedtuple containing the following fields: id : array, dtype uint unique ID of cluster trial: array, dtype uint which trial was this cluster part of time : array times at which cluster spectra are output, in yr cloudy_filter_names : list of string a list giving the name for each filter cloudy_filter_units : list of string a list giving the units for each filter cloudy_filter_wl_eff : list effective wavelength of each filter; this is set to None for the filters Lbol, QH0, QHe0, and QHe1; omitted if nofilterdata is True cloudy_filter_wl : list of arrays a list giving the wavelength table for each filter; this is None for the filters Lbol, QH0, QHe0, and QHe1; omitted if nofilterdata is True cloudy_filter_response : list of arrays a list giving the photon response function for each filter; this is None for the filters Lbol, QH0, QHe0, and QHe1; omitted if nofilterdata is True cloudy_filter_beta : list powerlaw index beta for each filter; used to normalize the photometry cloudy_filter_wl_c : list pivot wavelength for each filter; used to normalize the photometry cloudy_phot_trans : array, shape (N_cluster, N_filter) photometric value for each cluster in each filter for the transmitted light (i.e., the starlight remaining after it has passed through the HII region); units are as indicated in the units field cloudy_phot_emit : array, shape (N_cluster, N_filter) photometric value for each cluster in each filter for the emitted light (i.e., the diffuse light emitted by the HII region); units are as indicated in the units field cloudy_phot_trans_emit : array, shape (N_cluster, N_filter) photometric value in each filter for each cluster for the transmitted plus emitted light (i.e., the light coming directly from the stars after absorption by the HII region, plus the diffuse light emitted by the HII region); units are as indicated in the units field Raises IOError, if no photometry file can be opened; ValueError, if photsystem is set to an unknown value """ # Open file fp, fname = slug_open(model_name+"_cluster_cloudyphot", output_dir=output_dir, fmt=fmt) # Print status if verbose: print("Reading cluster cloudy photometry for model " + model_name) if read_info is not None: read_info['fname'] = fname # Read data if fname.endswith('.txt'): # ASCII mode if read_info is not None: read_info['format'] = 'ascii' # Read the list of filters line = fp.readline() filters = line.split()[2::3] nfilter = len(filters) # Burn a line line = fp.readline() # Read the list of units line = fp.readline() line = line.replace(')', '(').split('(') # split by ( and ) units = [] for l in line: if (not l.isspace()) and (len(l) > 0): units.append(l) units = units[1::3] # Get rid of the units for time # Burn a line line = fp.readline() # Prepare holders for data cluster_id = [] time = [] trial = [] phot_trans = [] phot_emit = [] phot_trans_emit = [] # Read through data trialptr = 0 for line in fp: if line[:3] == '---': trialptr = trialptr+1 continue linesplit = line.split() cluster_id.append(int(linesplit[0])) time.append(float(linesplit[1])) phot_trans.append(linesplit[2::3]) phot_emit.append(linesplit[3::3]) phot_trans_emit.append(linesplit[4::3]) trial.append(trialptr) # Convert to arrays cluster_id = np.array(cluster_id, dtype='uint') time = np.array(time, dtype='float') trial = np.array(trial, dtype='uint') phot_trans = np.reshape(np.array(phot_trans, dtype='float'), (len(time), len(filters))) phot_emit = np.reshape(np.array(phot_emit, dtype='float'), (len(time), len(filters))) phot_trans_emit = np.reshape(np.array(phot_trans_emit, dtype='float'), (len(time), len(filters))) # Close file fp.close() elif fname.endswith('.bin'): # Binary mode if read_info is not None: read_info['format'] = 'binary' # Read number of filters nfilter = int(fp.readline()) # Read filter names and units filters = [] units = [] for i in range(nfilter): line = fp.readline() filters.append(line.split()[0]) units.append(line.split()[1]) # Prepare holders for data cluster_id = [] time = [] trial = [] phot_trans = [] phot_emit = [] phot_trans_emit = [] # Go through the rest of the file while True: # Read number of clusters and time in next block, checking # if we've hit eof data = fp.read(struct.calcsize('LdL')) if len(data) < struct.calcsize('LdL'): break trialptr, t, ncluster = struct.unpack('LdL', data) # Skip if no clusters if ncluster == 0: continue # Add to time and trial arrays time.extend([t]*ncluster) trial.extend([trialptr]*ncluster) # Read the next block of clusters data = fp.read(struct.calcsize('L')*ncluster + struct.calcsize('d')*ncluster*nfilter*3) data_list = struct.unpack(('L'+'d'*nfilter*3)*ncluster, data) # Pack clusters into data list cluster_id.extend(data_list[::3*nfilter+1]) phot_trans.extend( [data_list[(nfilter+1)*i+1:(nfilter+1)*i+1+nfilter] for i in range(ncluster)]) phot_emit.extend( [data_list[(nfilter+1)*i+1+nfilter:(nfilter+1)*i+1+2*nfilter] for i in range(ncluster)]) phot_trans_emit.extend( [data_list[(nfilter+1)*i+1+2*nfilter:(nfilter+1)*i+1+3*nfilter] for i in range(ncluster)]) # Convert to arrays cluster_id = np.array(cluster_id, dtype='uint') time = np.array(time, dtype='float') trial = np.array(trial, dtype='uint') phot_trans = np.reshape(np.array(phot_trans, dtype='float'), (len(time), len(filters))) phot_emit = np.reshape(np.array(phot_emit, dtype='float'), (len(time), len(filters))) phot_trans_emit = np.reshape(np.array(phot_trans_emit, dtype='float'), (len(time), len(filters))) elif fname.endswith('.fits'): # FITS mode if read_info is not None: read_info['format'] = 'fits' # Get cluster ID, trial, time cluster_id = fp[1].data.field('UniqueID') trial = fp[1].data.field('Trial') time = fp[1].data.field('Time') # Get filter names and units filters = [] units = [] i = 4 while 'TTYPE'+str(i) in fp[1].header.keys(): filters.append(fp[1].header['TTYPE'+str(i)][:-12]) units.append(fp[1].header['TUNIT'+str(i)]) i = i+3 # Get photometric data nfilter = len(filters) ntime = len(time) phot_trans = np.zeros((ntime, nfilter)) phot_emit = np.zeros((ntime, nfilter)) phot_trans_emit = np.zeros((ntime, nfilter)) for i in range(len(filters)): phot_trans[:,i] = fp[1].data.field(filters[i]+'_Transmitted') phot_emit[:,i] = fp[1].data.field(filters[i]+'_Emitted') phot_trans_emit[:,i] \ = fp[1].data.field(filters[i] + '_Transmitted_plus_emitted') # Read filter data if requested if not nofilterdata: if verbose: print("Reading filter data") wl_eff, wavelength, response, beta, wl_c = read_filter(filters) # Do photometric system conversion if requested if photsystem is not None: if verbose: print("Converting photometric system") if nofilterdata: photometry_convert(photsystem, phot_trans, units, filter_last=True) photometry_convert(photsystem, phot_emit, units, filter_last=True) photometry_convert(photsystem, phot_trans_emit, units, filter_last=True) else: photometry_convert(photsystem, phot_trans, units, wl_eff, filter_last=True) photometry_convert(photsystem, phot_emit, units, wl_eff, filter_last=True) photometry_convert(photsystem, phot_trans_emit, units, wl_eff, filter_last=True) # Construct return object if nofilterdata: out_type = namedtuple('cluster_phot', ['id', 'trial', 'time', 'cloudy_filter_names', 'cloudy_filter_units', 'cloudy_phot_trans', 'cloudy_phot_emit', 'cloudy_phot_trans_emit']) out = out_type(cluster_id, trial, time, filters, units, phot_trans, phot_emit, phot_trans_emit) else: out_type = namedtuple('cluster_phot', ['id', 'trial', 'time', 'cloudy_filter_names', 'cloudy_filter_units', 'cloudy_filter_wl_eff', 'cloudy_filter_wl', 'cloudy_filter_response', 'cloudy_filter_beta', 'cloudy_filter_wl_c', 'cloudy_phot_trans', 'cloudy_phot_emit', 'cloudy_phot_trans_emit']) out = out_type(cluster_id, trial, time, filters, units, wl_eff, wavelength, response, beta, wl_c, phot_trans, phot_emit, phot_trans_emit) # Return return out